Chapter 2 Differentiation

07:43:00 Unknown 0 Comments


MCQ's with answers from chapter 1 Functions and Limits Mathematics book 2 for FSC pre engineering  for Board of Intermediate and Secondary education. Also For Entry Test Preparation for UET, NUST, PIEAS, GIKI, AIR, FAST, WAH University, other engineering Universities.

Chapter 2             DIFFERENTIATION



4)            The slope of the tangent to the curve y = x3 + 5 at the point (1, 2) is

A)      6
B)      2
C)      5
D)      3
Answer:                 D

5)            If a particle thrown vertically upward move according to the law, x = 32t – 16 t2 (x in ft, t in sec) then the height attained by the particle when the velocity is zero is

A)      0
B)      32t
C)      16ft
D)      2ft
Answer:                 C

6)            If a particle moves according to the law x = 16 t – 4 then acceleration at time t = 20 is

A)      6
B)      0
C)      116
D)      4
Answer:                 B

7)            If a particle moves according to the law x = et then velocity at time t = 0 is

A)      0
B)      1
C)      e
D)      none of these
Answer:                 B

4.         Differentiation of Trigonometric, Logarithmic and Exponential Function
1)            The derivative of sin (a + b) w.r.t x is

A)      cos (a + b)
B)      – cos (a + b)
C)      cos (a – b)
D)      0
Answer:                 D
2)            The derivative of x sina w.r.t x is
A)      cos a
B)      x cos a + sin a
C)      – x cos a + sin a
D)      sin a
Answer:                 D


5)            The derivative of tan (ax + b) w.r.t tan (ax + b) is

A)      sec2 (ax + b)
B)      a sec2 (ax + b)
C)      b sec2 (ax + b)
D)      1
Answer:                 D
6)            If x = 2cos7q, y = 4sin7q then dy/dx is equal to

A)      4tan7q
B)      – 4tan7q
C)      4tan5q
D)      – 2tan5q
Answer:                 D




10)          The base of the natural logarithmic function is

A)      10
B)      2
C)      e
D)      none of these
Answer:                 C
11)          The natural exponential function is defined by the equation

A)      y = ax
B)      y = 2x
C)      y = ex
D)      y = 3x
Answer:                 C

12)          The derivative of sin (sin a) w.r.t x is

A)      cos (sina)
B)      cos (sina) cosa
C)      cos (cosa)
D)      0
Answer:                 D

13)          If ay = x then the value of y is
A)      ax
B)      logax
C)      x/a
D)      a/x
Answer:                 B

15)          The derivative of exp (sinx) is

A)      exp (cosx)
B)      sinx exp(cosx)
C)      (cosx) exp (sinx)
D)      cosx exp (cosx)
Answer:                 C

16)          The derivative of e2 w.r.to x is

A)      2e
B)      2
C)      1
D)      0
Answer:                 D

17)          The derivative of Xx is

A)      X x – 1
B)      X.X x – 1
C)      Xx (1+ln x)
D)      Xx ln x
Answer:                 C

18)          If dx or dx is quite small then the difference between dy and dy will be

A)      very large
B)      large
C)      small
D)      negligible
Answer:                 D

19)          If radius of a circular disc is unity then its area will be

A)      pc2
B)      2pc
C)      p
D)      2p
Answer:                 C

20)          the derivative of the function f(x) = sinx + sinx + …. Up to 9 times, is

A)      cosx + cosx + cosx
B)      9 cosx
C)      9 sin x
D)      3 cos x
Answer:                 B


23)          The derivative of the function y = tanx  is

A)      tanx sec2 45o + sec2 x tan 45o
B)      sec2x sec245o
C)      Sec2 45o
D)      Sec2x
Answer:                 D

24)          A particle thrown vertically upward, moves according to the law, x = 32 – 16t2 (x in ft, t in sec) then the maximum height attained by the particle is

A)      32ft
B)      16ft
C)      48ft
D)      2ft
Answer:                 B


25)          If in a function y = x2 – 2x, x = 4, increment in x = 0.5 then the value of differential of the dependent variable is

A)      4.5
B)      3.5
C)      3
D)      2.5
Answer:                 C


Higher order Derivatives Maxima and Minima

1)            If y = e2x the y9 is
A)      e2x
B)      29
C)      29 e2x
D)      28 e2x
2)            In the interval (- ¥, ¥) the function defined by the equation y = x3 is
A)      increasing
B)      decreasing
C)      constant
D)      even
3)            The origin for the function y = x3 is a point of
A)      Maxima
B)      Minima
C)      Inflexion
D)      Absolute Maxima
4)            If f¢ ( c ) exists then f ( c) is a maximum or minimum value of f, only if
A)      f¢( c) > 0
B)      f¢( c) < 0
C)      f¢( c) = 0
D)      f¢( c) = 1
5)            If f¢( c) < 0 for every c Î (a, b) then in (a, b) f is
A)      increasing
B)      decreasing
C)      constant
D)      zero
6)                   A function f will have a minimum value at x = a, if
       f¢ (a) = 0 and f¢¢ (a) is
A)      + ve
B)      – ve
C)      0
D)      ¥
7)            The function f(x) = x2 increases in the interval
A)      [1, 5]
B)      [- 1, 5]
C)      [- 5, 1]
D)      [-5, - 1]
8)            The function f(x) = 1 – x2 increases in the interval
A)      (- 5, 1)
B)      (-5, 2)
C)      (–5, 3)
D)      (-5, -1)
9)            The function f(x) = 1 – x3 decreases in the interval
A)      (-1, 1)
B)      (-2, 2)
C)      (-3, 3)
D)      All A, B and C are true
10)          In the interval (-2, 3) the function f(x) = x2 is
A)      increasing
B)      decreasing
C)      neither increasing nor decreasing
D)      maximum

12)          The function f(x) = x3 – 1 is increasing in the interval
A)      (-5, -1)
B)      (-5, 1)
C)      (-5, 5)
D)      All A, B, C are true
13)          The function f(x) = 1 – x3 has a point of inflexion at
A)      origin
B)      x = 2
C)      x = - 1
D)      x = 1
14)          The function f(x) = x2 – 3x + 2 has a minima at
A)      x = 1
B)      x = 3/2
C)      x = 3
D)      x = 2


17)          The function f(x) = 3x2 – 4x + 5 has a minima at
A)      x = 2/3
B)      x = 2
C)      x = 3
D)      x = - 2
18)          The function f(x) = 5x2 – 6x + 2 has a minima at
A)      x = 3
B)      x = 5
C)      x = 3/5
D)      x = - 3/5
19)          In the interval (0, p) the function sinx has a maxima at the point
A)      x = 0
B)      x = p/2
C)      x = p
D)      x = p/4
20)          In the interval (0, p) the function f(x) = sin x has a minimum value at the point
A)      x = 0
B)      x = p/2
C)      x = p/4
D)      x = p



30)          Two positive real numbers, whose sum is 40 and whose product is a maximum are
A)      30, 10
B)      25, 15
C)      20, 20
D)      19, 21
















You Might Also Like

0 comments:

Confused? Feel Free To Ask
Your feedback is always appreciated. We will try to reply to your queries as soon as time allows.